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PREFACE 

The work reported herein was conducted at the Arnold Engineering Development 
Center (AEDC), Air Force Systems Command (AFSC), at the request of the Air Force 
Armament Laboratory (AFATL/DLMA), Eglin Air Force Base, Florida (Mr. Carroll B. 
Butler was the AFATL project monitor); the U.S. Army Missile Command 
(AMSMI-RDK), Redstone Arsenal, Alabama; and the Air Force Flight Dynamics 
Laboratory (AFFDL/FGCB), Wright-Patterson Air Force Base, Ohio. The work was 
conducted under Program Element 63601F, System 670E, Task 01. The results were 
obtained by ARO, Inc., AEDC Division (a Sverdrup Corporation Company), operating 
contractor for the AEDC, AFSC, Arnold Air Force Station, Tennessee, under ARO 
Project No. V42A-HIA. The author of this report was J. L. Jordan, ARO, Inc. The data 
analysis- was completed on August 19, 1976, and the manuscript (ARO Control No. 
ARO-VKF-TR-77-6) was submitted for publication on February 2, 1977. 
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1.0   INTRODUCTION 

A broad data base covering a wide variety of configuration variables is necessary to 
aid in the continuing development of missile and bomb weapon systems. This test 
program was devised to provide preliminary weapon system design force and moment 
data on a comprehensive matrix of nose-afterbody geometries at supersonic speeds. 
Several nose geometries included in the matrix were intended to address immediate 
requirements of the test sponsors concerning radome designs in support of current 
development programs. Of prime interest on these configurations was incremental drag 
caused by nose shape variation at a given attitude. In general, the test objective was to 
produce a bank of experimental static force and moment data for guided and unguided 
missile and bomb weapon systems. 

The test was conducted during two separate periods in the Arnold Engineering 
Development Center (AEDC) von Kärman Gas Dynamics Facility (VKF) Supersonic Wind 
Tunnel (A) at Mach numbers 1.50, 2.00, 2.50, 3.01, 3.47, 4.02, and 4.50 at a primary 
test Reynolds number of 0.18 million based on model base diameter. This test Reynolds 
number condition was chosen in an attempt to maintain a laminar boundary layer at each 
Mach number for the range of model lengths at zero angle of attack. The laminar 
condition was selected so that pressure drag coefficients for these bodies at a = 0 could 
be. obtained from the test data by accounting for the measured base drag and calculated 
laminar skin-friction drag coefficients. Testing at higher Reynolds numbers, which would 
have resulted in a mixed 'laminar-transitional-turbulent condition in most cases, would 
have made the determination of the appropriate skin-friction drag contribution more 
uncertain. 

Static stability and axial-force data were obtained on various combinations of 
twenty nose configurations with four afterbody configurations. Each ogive-cylinder 
configuration formed an axisymmetric body. The effects of nose bluntness, nose caliber, 
and afterbody caliber were investigated. The angle-of-attack range was from -6 to 14 deg. 
All data generated during this test will be included in a report published by AFATL. 

2.0  APPARATUS 

2.1   WIND TUNNEL 

Tunnel A (Fig. 1) is a continuous, closed-circuit, variable density wind tunnel with 
an automatically driven flexible-plate-type nozzle and a 40- by 40-in. test section. The 
tunnel can be operated at Mach numbers from 1.5 to 6.0 at maximum stagnation 
pressures from 29 to 200 psia, respectively, and stagnation temperatures up to 750°R (MM 

= 6.0). Minimum operating pressures range from about one-tenth to one-twentieth of the 
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maximum at each Mach number. The tunnel is equipped with a model injection system 
which allows removal of the model from the test section while the tunnel remains in 
operation. A description of the tunnel and airflow calibration information may be found 
in the Test Facilities Handbook (Ref. 1). 

2.2 MODELS 

Photographs and details of the models and components are shown in Figs. 2 through 
4. All model components were stainless steel and were provided by AFATL. Model 
components consisted of twenty nose sections and four cylindrical midbodies, each using 
the same cylindrical afterbody. 

The nose geometries included 17 tangent ogive sharp and spherically blunted noses, 
with bluntness ratios from 0.25 to 0.75, and one hemispherical nose. In addition, there 
were two power-series noses whose shapes were defined by an exponential function of 
the nose axial location. The nose lengths ranged from 1 to 4 calibers. The four midbody 
lengths were 5, 7, 9, and 11 calibers. The single afterbody was 1 caliber long. Total 
model length ranged from 8.4 to 19.2 in. with a diameter of 1.2 in. 

2.3 INSTRUMENTATION AND PRECISION 

Tunnel A stilling chamber pressure is measured with a 15-, 60-, 150- or a 300-psid 
transducer referenced to a near vacuum. Based on periodic comparisons with secondary 
standards, the uncertainty (a bandwidth which includes 95 percent of the residuals) of 
these transducers is estimated to be within ±0.2 percent of reading or ±0.015 psia, 
whichever is greater. Stilling chamber temperature is measured with a copper-constantan 
thermocouple with an uncertainty of ±3°F based on repeat calibrations. 

Model forces and moments were measured with six-component, moment type, 
strain-gage balances supplied by AEDC-Propulsion Wind Tunnel Facility (PWT) and 
calibrated by VKF. A different balance was used during the second test entry because the 
first balance was being used in another test at the time. Before each test entry, static 
loads in each plane and combined static loads were applied to the balance to simulate the 
range of loads and center-of-pressure locations anticipated during the test. The following 
uncertainties represent the bands of 95 percent of the measured residuals, based on 
differences between the applied loads and the corresponding values calculated from the 
balance calibration equations included in the final data reduction. The range of check 
loads applied and the measurement uncertainties for each balance are listed on the 
following page. 
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Entry 1/Entry 2 

- ■ 1 Balance Range Of 
Design Calibration Check Measurement 

Component Loads Load Range Loads uncertainty 

Normal force, lb ±20/±10 ±20/±10 ±10/±6 ±0.05/±0.04 
Pitching moment, *in.-lb ±40/±20 +40/+20 ±6/±4 ±0.04/±0.03 
Side force, lb ±20/±10 ±20/±10 ±10/±6 ±0.03/±0.04 
Yawing moment, *in.-lb ±40/±20 ±40/±20 ±6/±4 ±0.04/±0.02 
Rolling moment, in.-lb ±6/±2.25 ±6/10.9 ±0.5/±0.5 ±0.01/±0.03 
Axial force, lb ±6/±6 ±6/±6 0 to 6 

0 to 6 
±0.02/±0.02 

*About balance forward moment bridge. 

The transfer distances from the balance forward moment bridge to the model 
moment reference location along the longitudinal axis (see Fig. 4a) were 2.382, 3.S88, 
4.813, and 5.992 in. for the 5-, 7-, 9-, and 11-caliber midbody sections, respectively, and 
were measured with an estimated precision of ±0.005 in. 

Base pressures during the pitch-pause data mode were measured with 15-psid 
transducers referenced to a near vacuum. A 5-psid, fast response pressure transducer was 
used in conjunction with the 15-psid transducer to obtain base pressure during the 
continuous sweep data mode. Based on periodic comparisons with secondary standards, 
the .estimated precision of these transducers is 0.003 psi or 0.2 percent of the reading, 
whichever is greater. Base pressure probe locations are illustrated in Fig. 5. 

Model flow-field shadowgraphs or color schlierens were taken on all configurations 
at selected model attitudes. 

3.0  PROCEDURE 

3.1   TEST CONDITIONS 

The test was conducted at Mach numbers 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, and 4.5. The 
test Reynolds number, based on model cylinder diameter, was 0.18 million. A summary 
of the test conditions at each Mach number is given below. 

M^        P      psia      T      °R      q^,  psia      Poo, psia      Re    x 10~6 

1.50 

2.00 

6.5 

7.5 

575 

575 

2.80 

2.69 

1.77 

0.96 

0.18 

0.18 



AEDC-TR-77-31 

M 
00 

PQ, psia 

9.5 

To, •■ 

575 

q», psia 

2.42 

p^, psia Red x 10"
6 

2.50 0.55 0.18 

3.01 13.1 575 2.23 0.35 

3.47 16.6 575 1.92 0.23 

4.02 22.0 580 1.60 0.14 

4.50 28.0 580 1.37 0.09 ■ 

A test summary, showing all configurations tested and the variables for each, is 
presented in Table 1. 

3.2 TEST PROCEDURE 

Data were obtained for an angle-of-attack range of -6 to 14 deg at zero roll angle. 
Data were also obtained at other roll angles to check for possible model-balance 
misalignment and flow nonuniformity effects. 

To enhance the data acquisition rate, the force and base pressure data were 
primarily obtained with the continuous sweep technique at a sweep rate of approximately 
0.5 deg/sec. Data sampling rate was 1,250 channels/sec, and 15 data loops were averaged 
for each data point, spanning an angle range of about 0.1 deg. For comparison purposes, 
conventional pitch-pause-type data were taken periodically throughout the test. For this 
data acquisition mode, the model was pitched to the desired attitude and data recorded 
after a preset pause to allow the four base pressures to stabilize. 

Insufficient time is available for base pressure stabilization in the sweep mode of 
testing when the large volume standard pressure system is used. In the sweep mode, 
therefore, a fast response pressure transducer was employed. The four standard pressures 
were allowed to stabilize at a = 0 before each sweep to obtain a reference base pressure 
level. The low volume transducer then provided the base pressure differential from that 
level throughout the a-sweep. Approximately 97 percent of the test data was obtained 
using the continuous sweep mode of operation. 

3.3 DATA UNCERTAINTY 

An evaluation of the influence of random measurement errors is presented in this 
section to provide a partial measure of the uncertainty of the final test results presented 
in this report. Although evaluation of the systematic measurement error (bias) is not 
included, it should be noted that the instrumentation precision values (given in Section 
2.3) used in this evaluation represent a total uncertainty combination of both systematic 
and two-sigma random error contributions. 

8 
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3.3.1   Test Conditions 

Uncertainties in the basic tunnel parameters P0 and T0 (see Section 2.3) and the 
two-sigma deviation in Mach number determined from test section flow calibrations were 
used to estimate uncertainties in the other free-stream properties, using the Taylor series 
method of error propagation. 

 Uncertainty  (±), percent  

M M Re 

1.50 1.3 

2.00 1.0 

2.50 0.8 

3.01 0.7 

3.47 0.6 

4.02 0.5 

4.50 0.4 

3.3.2  Test Data 

0.2 0.5 2.9 0.3 0.9 

3.1 1.1 1.2 

3.1 1.5 1.3 

3.2 1.8 1.4 

2.9 1.7 1.3 

2.7 1.7 1.3 

2.5 1.6 1.3 

The data are presented in the body-axis system. Pitching moments are referenced to 
a point on the model longitudinal centerline at the nose-body juncture (see Fig. 4). The 
model base diameter is used as the reference length and the body cross-sectional area is the 
reference area for all aerodynamic coefficients. 

The balance and base pressure uncertainties listed in Section 2.3 were combined 
with uncertainties in the tunnel parameters, using the Taylor series method of error 
propagation, to estimate the uncertainty of the aerodynamic coefficients, and these are 
presented below. Results shown are from the first entry. Those from the second entry are 
generally somewhat lower. 

Absolute Uncertainty (±) 
Near Maximum Measured Coefficient Value 

M 
00 CN 

C 
m \ CA 

1.50 

2.00 

0.017 

0.028 

0.085 

0.120 

0.007 

0.013 

0.021 

0.022 
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M 
CO 

CN 
C 

m 
CA CA 

2.50 0.036 0.115 0.011 0.015 

3.01 0.046 0.184 0.020 0.023 

3.47 0.034 0.061 0.012 0.014 

4.02 0.044 0.174 0.021 0.022 

4.50 0.038 0.075 0.015 0.015 

The basic precision of the aerodynamic coefficients was also computed using only 
the balance and base pressure uncertainties listed in Section 2.3 along with the nominal 
test conditions, using the assumption that the free-stream flow nonuniformity is a bias 
type of uncertainty which is constant for all test runs. These values, therefore, represent 
the data repeatability expected and are especially useful for detailed discrimination 
purposes in parametric model studies. 

Repeatability (±) 
Measured Coefficient Value 

M 
00 CN 

C 
m X CA 

1.50 0.016 0.080 0.006 0.020 

2.00 0.016 0.083 0.007 0.014 

2.50 0.018 0.074 0.007 0.013 

3.01 0.020 0.101 0.008 0.010 

3.47 0.023 0.049 0.009 0.012 

4.02 0.028 0.140 0.011 0.012 

4.50 0.032 0.068 0.013 0.014 

The uncertainty in model angle of attack (a), as determined from tunnel sector 
calibrations and consideration of the possible errors in model deflection calculations, is 
estimated to be ±0.1 deg. 

4.0   RESULTS AND DISCUSSION 

Results are presented from generalized nose configurations which illustrate typical 
effects of nose bluntness, nose and afterbody caliber, and Mach number on the body 
aerodynamic force and moment characteristics. A nose family consists of a group of 
noses having the same virtual length (caliber) and ogive radius with varying bluntness 
(RN/RB). Results are also shown for two power-series nose configurations of particular 

10 
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interest to the test sponsors, and selected results are compared to theoretical solutions of 
forebody axial force at zero model pitch (CAQ). For these solutions, which were 
performed at AEDC-VKF, skin-friction drag was obtained using a method based on the 
work of Patankar and Spaltung (Ref. 2) as modified by Mayne and Dyer (Ref. 3). 
Pressure drag data were obtained from calculations made using the methods of Inouye, 
Rakich, and Lomax (Ref. 4). 

An indication that laminar flow was maintained throughout the test near a = 0 is 
shown in Figure 6. The forebody axial-force coefficient, CA0, for the sharp nose (N22) 
configuration remains very near the laminar level at the lowest Mach number (M^ = 
1.50), even with the longest configuration tested. Transition Reynolds number increases 
with Mach number and as this test was conducted at a constant unit Reynolds number, it 
is belived that the laminar flow criteria for all results at a = 0 were met. 

Nose geometry effects are presented in Figs. 7 through 11. The 3-caliber family of 
noses with the 10-caliber afterbody at Mach numbers 1.50 and 3.01 (Fig. 7) was selected 
to illustrate the effects of hemispherical nose bluntness. The results for the 2- and 
4-caliber nose familes were very similar, although of different magnitudes. Little 
measurable effect on the normal-force (CN) or pitching-moment (Cm) coefficients was 
observed at Mach 1.50. Forebody axial-force coefficient (CA) increased nonlinearly with 
bluntness. At Mach 3.01 the same trend existed in CA, but CN decreased somewhat with 
increased bluntness. The center of pressure measured in calibers aft of the nose-body 
juncture (XCP) moved rearward at M, = 3.01 with increases in nose bluntness. All XCP 
results between -2 and 2-deg angle of attack are omitted since the calculation of this 
parameter (-Cm/C^) produces unrealistic values near a CN of zero. Furthermore, values 
of XCP at a = 0 obtained from C„,a/CNa are also omitted for M., = 1.50 and 2.0 in 
most cases because of the flatness of the Cm curve through a = 0, coupled with the 
uncertainty in measurement of Cm (see Sect. 3.3.2). 

A comparison of the theoretical CAo solutions with results for nose bluntness 
variation is given in Fig. 8 for the 3-caliber, nose family and 10-caliber afterbody 
combination. Generally good agreement can be seen for low and moderate bluntnesses 
with some difference at 0.75 bluntness at Mach 3.01. The curves reflect a parabolic 
increase in CA 0 with nose bluntness, principally caused by pressure drag increases. 

The nose shape effects on the 2.25-caliber nose family and the two power-series 
noses with the 10-caliber afterbody are presented in Figs. 9 and 10, respectively, for 
Mach 3.01. The 2.25-caliber nose family exhibited the same general trends discussed 
above. The two power-series noses were nearly identical in CN and Cm across the 
angle-of-attack range; therefore, XCP behaved similarly. The blunter N31 configuration, 
however, had a 50-percent higher forebody drag (CA ) over the angle-of-attack range. 

11 
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The nose caliber effect for sharp and 50-percent blunt nose geometries is illustrated 
in Fig. 11 for Mach 3.01. A 1-caliber, 50-percent blunt nose was not tested, so only 2-, 
3-, and 4-caliber nose configurations are presented in Fig. lib. The CN increase at a given 
attitude with nose caliber increase was considerably more pronounced on the sharp nose 
shapes than on the blunt configurations. The XCP moved about 0.5 calibers forward with 
each 1-caliber increase in nose length. The variation in CA resembled a nose-bluntness 
effect with decreasing nose caliber corresponding to increasing nose bluntness. Results 
from the noses of intermediate caliber are omitted for figure clarity but could be 
interpolated from the results shown. The trends are similar at other Mach numbers. 

The remaining configuration variable examined was afterbody length (the 
midbody-afterbody combination is referred to as an afterbody). This effect is shown in 
Fig. 12 for Mach 3.01. The results for 3-caliber sharp and blunt noses (N18 and N20, 
respectively) given in Fig. 12 typify most of the data. The slight increase in CA as the 
afterbody is lengthened results from the increase in skin-friction drag. The changes in CM 

and Cm are almost linear with afterbody length at a given attitude, and the incremental 
change is about the same for both nose shapes. Predictably, XCP moves aft with 
afterbody length increases, with close to a 0.8-caliber shift for a 2-caliber afterbody 
change at the higher angles of attack for both nose configurations. 

Mach number effects are presented in Figs. 13 through 17. Again, the 3-caliber noses 
are presented as typical of all the nose familes. These noses, with the 10-caliber 
afterbody, are shown in Figs. 13 and 14. Except at high angles of attack, the XCP results 
(Fig 13) show little change between Mach 1.50 and 2.00 and between Mach 3.01 and 
4.02. The center of pressure generally moves aft as Mach number increases. Slopes of the 
CM data (at a = 0) for the blunt noses are such that CN a increases from Mach 1.50 to a 
maximum near Mach 3.0 and then decreases with further Mach number increases (Fig. 
14). For the sharp nose configuration (N18*M9*A17), CN0 increases with Mach number 
increase. Increasing ■ Mach number generally produced a more negative Cm<1, with little 
change in Cma caused by bluntness except at M,,, = 3.01 where the sharp nose 
configuration departed from the general trend. For noses of 25-percent bluntness or less, 
CA or CA 0 shows little variation with Mach number. For noses of greater bluntness there 
was an increase in CA or CA0 with increased Mach number which leveled off at the 
higher Mach numbers. Included in Fig. 14 are results of the theoretical laminar flow CA0 

calculations for Mach number variation on the N18 and N20 noses with the 10-caliber 
afterbody. The results show particularly good agreement between experiment and theory 
at Mach 4.02 for both configurations and at Mach 1.50 for the N18 configuration. 

Mach number effects for the power-series noses with 10-caliber afterbody 
configurations are given in Figs. 15 and 16. The data trends with Mach number for these 

12 
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noses are very similar to those noted for the 3.0-caliber noses. The value of CA0 is higher for 
the blunter (N31) configurations except at Mach 1.50 where CAo was about the same for 
both configurations (see Fig. 16). 

Comparisons of the supersonic results from this test program with subsonic and 
transonic results of Cna, C„,a, and CAo obtained on the same models in two other test 
programs (Refs. 5 and 6), are given in Fig. 17 for the hemisphere-cylinder nose (N10) 
and the sharp 4-caliber nose (N22), both on the 10-caliber afterbody. The results are 
fairly consistent across the Mach number range particularly in CNQ and CA<). The data 
indicate an abrupt change in Cma between M„'~ 1.2 and l.S. The reason for this change 
is not known. However, there is reasonable agreement between the present data for the 
N22 configuration at M^ = 1.5 with results from Ref. 6. The small differences in the 
coefficients between the two tests, particularly in CAo, could be a Reynolds number 
effect. The Reynolds number, Re,j, was about 0.50 million in the tests of Ref. 6 and 
0.18 million in this test. 

5.0  SUMMARY OF RESULTS 

A static force test was conducted on a number of nose and cylindrical afterbody 
configurations at Mach numbers from 1.5 to 4.5 at angles of attack up to 14 deg. The 
test Reynolds number, based on model diameter, was 0.18 million and was chosen to 
ensure a laminar boundary-layer condition on the models at a = 0. Results of the test are 
summarized as follows: 

1. Generally, good agreement was obtained with analytical solutions for CAo 

for a laminar flow condition. 

2. Increases in Mach number generally resulted in a rearward movement of 
the center of pressure. 

. 3. For nose geometries with 25-percent bluntness or less, CAo remained 
constant or decreased slightly with increasing Mach number. Noses of 
greater bluntness exhibited an increase in CA 0 with Mach number. 

4. Typically, nose caliber increases moved the center of pressure forward and 
decreased CAo parabolically. 

5. Lengthening of the afterbody caused little change in CA and linear 
increases in CN and Cm with a corresponding rearward movement in 
center of pressure at a given alpha. 
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6. Within a family of noses, C»a was about the same at Mach 1.50, but the 
values diverged with increasing Mach number. Also, CNO at a given Mach 
number decreased with increased bluntness. 

7. Generally, good agreement exists between results from this test program 
and from other tests on the same models at lower Mach numbers. 
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Figure 3.   Continued. 
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Table 1.  Test Summary 

„1 J Mach Number 
Config Schedule Schedule 1.5 2.0 2.5 3.0 3.5 4.0 4.5 

N10*M5*A17 A 
B 

0 
0 

X 
X X X 

B 180 X 

I C 0 X ♦. C 180 X 

»13 B 0 X X X 
N14 X X X 
H15 X X X 

N16 X X X 
M17 X X X 
Nt8 X X X* 
H19 X X X 
N20 X X X* 
H21 X X X 
H22 A 0 X 

x2 x2 I B 0 X 
B 180 X 

I C 0 X ♦ C 180 X 
H23 B 0 X X x 
N24 

. 
0 X X X 

N25 0 X X X 
H26 A 0 X X X X X X 

B 0 X X X X X X X 
B 90 X 
B -90 X 
C 0 X X X X .. 0 D X X X X X 

H27 B 0 X X X X X X X 
H27 C 0 X X X X 
H27 0 D X X 

H28 B 0 X 
N29 t I X X X 
H30 1 X X X 
H31 ■ ♦ 1 X X X 

H10«K7*17 B 0 X X X X 
W13  X X X X 
N14 X X X X 
N15 X X X. X 
N16 X X x' X 
N17 X X X X 
N18 X X X* X 
H19 X X X X 
H20 X X X* 
1)21 X X X X 
H22 X X X X 
V23 X X X X 

' N24 X X X 
N25 X X X X 
M28 < X X X 
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Table 1.  Concluded 

1 
A 

Mach Number 
Config Schedule Schedule 1.5 2.0 2.5 3.0 3.5 4.0 4.5 

N10*M9*A17 B 0 X* 
X 

X* 
X 

X* 
X* 

X* 
X N13 

N14 X X X« X 
N1S X X X X 
N16 X X X* X 

N17 X X X X 
NIB X* K* X* ■  X« 
N19 X* X* X* X* 

N20 X* X* X* X* 
N21 X* X* X* X* 
N22 X X X X* X 

N23 X X X X 
N24 X X X* X 
N25 X X X X 
N26 X X X X* X 

N26 C 0 X 
N26 0 D X 
N27 B 0 X X X X* X 
N27 C 0 X 
N2B B 0 X X X X 
N29 A 0 X 
N29 B 0 X X X* X 
N30 1 1 X* X* X* X« 
N31 X* X* X* X* 

N10»M11*A17 A 
B 

0 
0 

X 
X X X X 

B 1B0 X X 

\ C 0 X 
N13 B 0 X X 
N14 X X X 
N15 X X X 
N16 X X X 
N17 X X X 

N18 X X X* 
N19 X X X 
H20 X X X* 
N21 X X X 
H22 X X X 
N23 X X X 
N24 X X X 
N25 X X X 
N26 X 
N27 X 
N2B X 

♦ Nominal Model Attitude 

Schedule Schedule Technique a, deg 8, deg + , deg 

A 0 Pitch-Pause -4,-2,1 
0,1,2,4,6,8, 
10,12,14, 

0 0 

B 0 Sweep -6-*14 0 0 
B 90 0 -6—14 90 
B -90 0 14—6 -90 
B 180 6-«-14 0 180 
C 0 14—6 0 0 
C 180 -14-»-6 0 180 
0 D 0 0 -170-*470 

Notes:  1. Model Attitude Schedules 

2. All data were «taken at a nominal Reynolds number of 0.18 million 
based on model base diameter except for the N22*M5*A17 configuration 
where data were also acquired at 3.6 million per ft at Mach 2.0, 
1.1, and 1.3, and 3.6 million per ft at Mach 3.0. 

*  These data are presented in this report. 
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NOMENCLATURE 

CA Forebody axial-force coefficient, CA( - CAJ, 

CAb.' """       Base axial-force coefficient, - (pb - P.J/q«, 

CA 0. Forebody axial-force coefficient at a = 0 

CA t' Total axial-force coefficient, total axial force/qJS 

Qn , Pitching-moment coefficient, pitching moment/qJSd (see Fig. 4 for moment 

reference) 

Cm a Slope of pitching-moment coefficient versus a curve at a = 0, 1 /deg 

CM Normal-force coefficient, normal force/q.S 

CNA Slope of normal-force coefficient versus a curve at a - 0, 1/deg 

d Model base diameter, 1.200 in. 

Mn Free-stream Mach number 

PB1-PB4      Model base pressure probes 1-4, respectively 

PBD Model base pressure measured with fast response transducer 

P0 Tunnel stilling chamber pressure, psia 

Pb Base pressure, psia 

P. Free-stream static pressure, psia 

q^ Free-stream dynamic pressure, psia 

Red Reynolds number based on free-stream conditions and model base diameter 

RJM/RB Model spherical nose radius ratioed to model base diameter, nose bluntness 

S -Model base area, 1.131 in.2 

T0 Tunnel stilling chamber temperature, °R 

X, Y, Model  nose  coordinates  along and perpendicular to the nose centerline, 

respectively, in. 
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XCP Model   center-of-pressure   location   measured   in   calibers   aft   of   the 
nose-midbody juncture, -Cm /CN 

a Angle of attack, deg 

ß Model side-slip angle, deg 

4> Model roll angle, deg 

CONFIGURATION DESIGNATION 

The model configuration is designated by a sequence of groups of letters and 
numbers separated by asterisks. The various groups indicate specific configuration 
components as indicated below. See Fig. 4 for details of the model and components. 

NXX Model nose section 

MXX Model midbody section 

Al 7 Model afterbody section 
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